Hi Mo
CHINESE JOURNAL OF LASERS

BAlE S

2014 4F 5 H May, 2014

A Method for Moving Target Detection on a Moving Camera
in the Presence of a Strong Parallax
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Abstract Based on projective geometry, a relationship between the moving cameras in the presence of a strong
parallax is analyzed, and unique constraints are proposed based on surface homography model. Generally, previous
works focus on Planar + Parallax or simple geometric constraints such as fundamental matrix, but the degradation
cannot be solved. A much more strong constraint is proposed to modify the surface degradation based on fundamental
matrix to line degradation based on surface homography, and solves the degradation by modeling, learning and
detecting. Unlike previous works, main planar is not needed and degradation is not ignored with no reason, through
surface homography model and modeling-learning-detecting framework. Experiments are performed based on actual
image data, and the results show that this model can learn the motion of cameras efficiently and be practical on
moving target detection with a moving camera with a strong parallax.
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1 Introduction

Moving target detection on an uncalibrated moving
camera is a complex and key technology in the research
of computer vision. Because of the camera movement,
the three-dimensional (3D) scene and independent
moving targets are in motion on the image plane
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simultaneously. It’s difficult to detect the moving
targets, as the global motion induced by the perspective
projection of the moving camera. At this point, the
traditional algorithm can only be limited to the parallax
negligible aerial video™ . However, due to the obvious
depth of 3D scene on the handheld, automotive and
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other mobile platforms, the strong parallax must be
considered and estimated effectively™ .

The latest mobile platform moving target detection
methods, mostly around the fundamental matrix, add
artificial priori constraints specific target, but cease to
be effective with a moving monocular camera on the
complex background. For general cases, especially for a
moving monocular camera, the latest and popular
methods applied to moving target detection are based on
multiple view geometry such as the fundamental
constraints™’, shape constraints™, and
constraints™ . To improve the detection ratio, some
priori constraints to specific targets on specific scenes
are introduced artificially, such as the flow vector bound
(FVB) constraint™’, and the Planar + Parallax induced
by the homography matrix-. Generally, the

degenerate case is ignored with no reason, while there
[3.5.7]

structure

are few constraints of nature innovation

In order to overcome the limitations of the traditional
methods, a fresh new modeling. learning and detecting
(MLD) model based on the surface homography
constraint (SHC) is proposed. The SHC constraint is for
camera motion parameter estimation, and the camera
motion model is built by MLD. Degenerate sequences of
frames are removed and learning library is updated to
estimate a no degradation SHC constraints. Moving
targets are detected by the non-degraded SHC.

2 Surface homography constraint

In order to compensate the parallax caused by the
moving camera, a SHC constraint is proposed. which is
induced by a planar surface based on the multiple view
geometry'™ . The degenerate case of SHC is analyzed.
2.1 Induction of surface homography matrix

The homography matrix is derived by a common
virtual planar as follows™’

H=K(A—aw"HK"', (D
where K and K’ are internal parameters of the camera
to the specific 3D point. As for common cases, not only
for the specific 3D point, the homography matrix is
needed to be corrected as follows

a, 0 ¢, O
1 1
K_ZO a, €, O—ZM. (2)
0 0 1 0
The corrected homography matrix is showed in
formula (3), and named SH for short.

v A o _an' -
5H_ZCH_M(A 7)M . (3)
2 =SH « x,, 4

where «, is of homogeneous coordinates, «, is of
normalized homogeneous coordinates, and x is of non-
homogeneous coordinates-" .
To be short and simple as follows:
SH =R-+1u", (5)
where,

R=MAM"', 1=—Ma, y =+ M' (6)

2.2 Point mapping based on surface homography

As shown in Fig.1, 3D point X lies on the planar r =
(", 1", it will satisfy formula (7) :

X =—1, (7

expand formula (7) as follows:
v X=ZJoM'x,=Zy x, =—1, (8)

letk = 1/Z. for the derivation:
'y =—k, 9

where there exists a relationship of matched pixels in
two views as follows:
2 =SHx = (R+ty")a = Re —te.  (10)
SHM is mamed for short of surface homography
mapping, and the mapping relationship of pixels in two
views is corresponded to the location of pixels, internal
/external parameters of the camera and the depth of the
3D point.

Fig.1 Plane induced surface homography

2.3 Induction of first constraint of SHC
The SHM representation in formula (10) is indeed a
general homography relationship on a surface. If 1 =
[t,.t,,¢.]T is a 3-vector,
corresponding skew-symmetric matrix [ ¢ ], as follows:
0 —i ot
[t], = | ¢ 0 —t]. an
—t, 0
To the matching points x, <> x,<>x; in three views,
the first constraint of SHC (SHC1) is written in the
form as follows:

then one defines a

[ty LRyx, =0

f:sT[t:sz]rszfz - O.
SHC1 is indeed an epipolar constraint equivalent to
the fundamental matrix'"’, but formula (12) has a much

(12)

more simple form.
2.4 Induction of second constraint of SHC

In order to overcome the limitations of the epipolar
constraint, geometric constraints over more than two
views which include the depth information of 3D points,
need to be imposed on the matched pixels x, <> x, <> x; as
follows:
—Rpx,) =— falz tiz Ky

th(xy — Ryx,) =— thtywk,

Therefore, there exists the second constraint of SHC

(SHC2) as follows:

th, (x,

(13)
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tyx, + (1, Ry — th R x, — thxy, = 0. (14)

2.5 Degenerate cases for SHC
2.5.1 Degenerate cases for SHC1

The SHC1 constraint is a commonly used geometric
constraint as the epipolar constraint for moving targets
detection in two views, which encapsulates the relative
orientation between two cameras™ . The degenerate
case for SHC1 is represented in Fig. 2. As the motion of
an uncalibrated camera, any static 3D point P can only
move on the planar r, that passes the optical center C, ,
C, and C,.

The most serious defect of SHC1 is that the
degeneration will always exist no matter what the
motion of the camera is in three views.

C.

2
Fig.2 Degradation of SHC-1

2.5.2 Degenerate cases for SHC2

The SHCZ2 constraint is a fresh new constraint in
The degenerate case for SHC2 is
represented in Fig. 3. As the motion of an uncalibrated
camera, any static 3D point P can only move on the
planar ., that is parallel to the image planar of three
views. Only when there exists no motion of yaw or
pitch, there exists a degeneration.

three views.

\/

v
C

2

C.

3

Fig.3 Degradation of SHC-2

2.5.3 Degenerate cases for SHC

The degenerate case for SHC including SHC1 and
SHC2 is represented in Fig.4. As the motion of an
uncalibrated camera, any static 3D point P can only
move on the line L on the planar =, when the camera
moves without motion of yaw or pitch.

Fortunately, this degeneration happens much less
frequently than the whole set of degenerate motion, as
only when the camera moves without motion of yaw or
pitch. And the MLD process will minimize the risk of
degradation.

C.

2

Fig.4 Degradation of SHC-1 and SHC-2

2.6 Robust estimation of SHC
In order to estimate the surface homography model,
the SHC is written as follows:
o FL,x, =0
i Fu,x, =0 . (15)
Yhxi +7ix, +vha, =0
Similar to the robust estimation of fundamental
matrix in the previous paper™', parameters of SHM can
be estimated through the normalized algorithm™ 7.

3 Modeling, learning and detecting

In this section, an automatic framework is presented
for modeling, learning and detecting in video scenes
from uncalibrated moving cameras, inspired by TLD™".
As shown in Fig.5, the MLD framework consists of
three steps: surface homography modeling, online
learning and moving targets detecting. By learning the
motion of the camera, the learning library can be
updated to refresh the SHC model, and independent
moving targets can be filtered out by the learning
library.

The extreme degradation is avoided by the online
learning of camera motionin an adaptive strategy™' ~'*'.

— modeling
update model
. model param
video
frame learning
update model object
detector param detection
— detecting I

Fig.5 Process of MLD

3.1 Modeling

As shown in formula (15), matched points in three
views are obtained according to kanade lucas tomasi
(KLT) algorithm™ "', and the history library is
updated by robust estimation of SHC.
3.2 Learning

As shown in Fig. 6, an online learning process of
camera motion is introduced to avoid the degenerate
cases and increase the detecting rate.

According to formulas (12) and (15), the rotation
matrix of cameras is written as follows:
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R=1[t].'F. (16)
In order to reduce the nonlinear degrees of freedom,
the rotation matrix of cameras is converted to Euler
angle representation””. It is easy to see that the
rotation angle satisfies follow formulas:
Euler angle:

0= arccos[%(Rn TR, t R, — 1>]. an

Yaw:
o Rsz _ sz
7 Tosing (18
Pitching:
o R13 _ Rsl
&= osm - (19)
ROH:
o Rli% _ Rsl
&= osmp - (20)

As shown in SHC constraints, the necessary condition
is that motion of yaw or pitch happens, and it will
satisfy e, = ¢, = 0. Online learning of history learning
library is updated to retain the camera motion of yaw
and pitch.

f;’;g:gl > modeling
— 1
euler

learning axis/angle

library

L2] L3
L2 3|=T1]13
L1] L2

Fig.6 Process of learning

The renovation of the learning library is judged by the
using of the motion of yaw and pitch parameters as
judged conditions. As shown in Fig.6, the diamond of
L. is the judged conditions between current frame I and
L. in the library. and the diamond of L, represents the
judged conditions between current frame I and L, in the

(a) Frame k

(]

(d) SH1-1 residual map

(b) Matching points

(e) SH1-2 residual map

library. Learning library is dynamically updated, and
the input image sequences are filtered and with less
degeneration.
3.3 Detecting

The moving targets detection on a moving camera is
finished by the learning library online updated and the
surface homography model, as shown in Fig.7. Rather
than the original image sequences. the detecting step
bases on the filtered image sequences, and degenerate
cases are avoided generally. As object tracking and
subsequent processing methods are not the focus of this

paper, interested readers are referred to paper®'’.

video |—>|modeling|—> SH constraint 1
A
Y

frame 1 constraints
[

) -
ﬁbralg,g SH constraint 2
traints
T2l constraim

Fig.7 Process of detecting

4 Experimental results

Experimental results obtained by the MLD system on
a number of real world video sequences. In all the
sequences, the camera undergoes general rotation,
translation and zooming. The performance of the MLD
of SHC is based on real data analysis. The experiment
under the proposed MLD algorithm framework for the
actual sequence of image processing, demonstrates the
effectiveness and robustness of our approach.

The proposed algorithm has been implemented on a
2 GHz PC with various cameras. Figs.8 — 10 illustrate
the moving object segmentation results for the three
consecutive frames.
4.1 SHC performance evaluation based on a moving

Camera
Figure 8(a) current frame captured by a moving

-FE

0o

(f) SH2 residual map

Fig.8 MLD moving target detection
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camera. Figure 8(b) depicts the computed optical flow by
KLT. Figures 8(d) — (f) show the computed residual
map of SH1-1, SH1-2, SH2. Figure 8(c) represents
detected independent moving objects (IMOs) in red
rectangle boxes which are a moving vehicle and human.
As the motion of the camera is not parallel to the
targets, both the SHC1 and SHCZ constraints have no
denegation according to the residual maps.

4.2 Evaluation of degenerate cases for SHC based on

a moving camera

The MLD process is shown in Fig. 9 when there
exists a degenerate case. The history library frame
k-1 is updated to frame k +1 to avoid the latest
degenerate case. As shown in Fig.9(g), the
degeneration of SH1-1 is obvious as the limitations of
the fundamental matrix, many independent moving
points failed to be detected. The degeneration of SH1-2
fails in Fig.9(h). In Fig.9(i1), SH2 has not

degenerated and detected moving vehicle and human,
without degeneration by updating of MLD.

(a) Frame k-1

(d) Library k-1

0 o

(g) SH1-1 residual map

(j) Matching points 12

(b) Frame k

(e) Library k&

(k) Matching points 32

(c) Frame k+1

(®) Library k+1

0o

(i) SH2 residual map

(D Detected target

Fig.9 MLD moving target detection (with a plat ground)

Figure 10 presents a sequence of frames containing
very strong parallax due to the varying depth of 3D
structures in the scene captured from a handheld
camera. A number of vehicles on the road are followed
by a handheld camera moving in the same direction, as
shown in the three original and matched frames in
Figs.10(a) — (¢). This is a typical example of the

degenerate motion discussed in Section 2.5.3. In
Figs.10(a) — (¢). As one can observe from the residual
maps, the insufficiency of the SH1 (epipolar constraint)
is illustrated in Figs.10(g) and (h). The filtered
detection result is presented in Figs.10(k) — (m). The
proposed SHC approach successfully filters regions in
case of the strong parallax and the degenerate case.
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(a) Frame K

(g) Detected target on SH1-1

(h) Detected target on SH1-2

(c) Matching points 32

(i) Detected target on SH2

Fig.10 MLD moving target detection (with varying depth of 3D structures)

5 Conclusion

Moving target detection on an uncalibrated moving
camera is a complex and key technology in the research
of computer vision. A fast method is proposed for
moving targets detection on a moving camera in the
presence of a strong parallax. A much more strong
constraint is proposed to modify the surface degradation
based on fundamental matrix to line degradation based
on SHC, and solves the degradation by modelling, learning
and detecting. Unlike previous works, main planar is not
needed and degradation is not ignored with no reason,
through SHM and MLD framework. Experiments are
performed based on actual image data, and the results show
that this model can learn the motion of cameras efficiently
and be practical on moving target detection with a moving
camera with a strong parallax.
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